Cho tứ diện \(OABC \) có \(OA \), \(OB \), \(OC \) đôi một vuông góc với nhau. Biết \(OA = a \), \(OB = 2a \) và đường thẳng \(AC \) tạo với mặt phẳng \( \left( {OBC} \right) \) một góc \(60^ \circ \). Thể tích khối tứ diện \(OABC \) bằng
A. \(\frac{{{a^3}\sqrt 3 }}{9}\).                               
B. \(3{a^3}\).                      
C. \({a^3}\).                        
D. \(\frac{{{a^3}\sqrt 3 }}{3}\).

Các câu hỏi liên quan