Cho tứ diện đều ABCD có cạnh bằng a, G là trọng tâm của tứ diện ABCD. Tính theo a khoảng cách d từ G đến các mặt của tứ diện. A. \(d = \frac{{a\sqrt 6 }}{9}\) B. \(\frac{{a\sqrt 6 }}{6}\) C. \(\frac{{a\sqrt 6 }}{3}\) D. \(\frac{{a\sqrt 6 }}{{12}}\)
G là trọng tâm tứ diện đều ABCD \( \Rightarrow d\left( {G;\left( {ABC} \right)} \right) = d\left( {G;\left( {ACD} \right)} \right) = d\left( {G;\left( {ABD} \right)} \right) = d\left( {G;\left( {BCD} \right)} \right)\). ABCD là tứ diện đều \( \Rightarrow {S_{ABC}} = {S_{ACD}} = {S_{ABD}} = {S_{BCD}} \Rightarrow {V_{G.ABC}} = {V_{G.ACD}} = {V_{G.ABD}} = {V_{G.BCD}}\). \( \Rightarrow {V_{G.ABC}} = \frac{1}{4}{V_{ABCD}}\). Ta sử dụng công thức nhanh : Thể tích của tứ diện đều cạnh a là \({V_{ABCD}} = \frac{{{a^3}\sqrt 2 }}{{12}}\). \( \Rightarrow {V_{G.ABC}} = \frac{1}{4}.\frac{{{a^3}\sqrt 2 }}{{12}} = \frac{{{a^3}\sqrt 2 }}{{48}}\).