Đáp án:7.x=5
8.x=3
Giải thích các bước giải:
\(\begin{array}{l}
7)\sqrt {x + 4} + \sqrt {x - 4} = 2x - 12 + 2\sqrt {{x^2} - 16} (*)\\
Dk:x \ge 4\\
Dat:\;t = \sqrt {x + 4} + \sqrt {x - 4} (t \ge 2\sqrt 2 )\\
\Rightarrow {t^2} = 2x + 2\sqrt {(x + 4)(x - 4)} \Rightarrow \sqrt {{x^2} - 16} = \frac{{{t^2} - 2x}}{2}\\
(*) \Rightarrow t = 2x - 12 + {t^2} - 2x\\
\Leftrightarrow {t^2} - t - 12 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = 4\\
t = - 3 \to loai
\end{array} \right.\\
t = 4 \Rightarrow \sqrt {x + 4} + \sqrt {x - 4} = 4\\
Dat:\sqrt {x + 4} = a;\sqrt {x - 4} = b(a,b \ge 0)\\
\Rightarrow \left\{ \begin{array}{l}
{a^2} - {b^2} = 8\\
a + b = 4
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a - b = 2\\
a + b = 4
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = 3\\
b = 1
\end{array} \right. \Rightarrow x = 5 \to TM\\
8)\sqrt {2x + 3} + \sqrt {x + 1} = 3x + 2\sqrt {(2x + 3)(x + 1)} - 16(**)\\
Dk:x \ge - 1\\
Dat:t = \sqrt {2x + 3} + \sqrt {x + 1} (t \ge 1)\\
\Rightarrow {t^2} = 3x + 4 + 2\sqrt {(2x + 3)(x + 1)} \Rightarrow \sqrt {(2x + 3)(x + 1)} = \frac{{{t^2} - 3x - 4}}{2}\\
(**) \Rightarrow t = 3x + {t^2} - 3x - 4 - 16\\
\Leftrightarrow {t^2} - t - 20 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = - 4 \to loai\\
t = 5
\end{array} \right.\\
t = 5 \Rightarrow \sqrt {2x + 3} + \sqrt {x + 1} = 5\\
Dat:\left\{ \begin{array}{l}
\sqrt {2x + 3} = a\\
\sqrt {x + 1} = b
\end{array} \right.(a,b \ge 0)\\
\Rightarrow \left\{ \begin{array}{l}
{a^2} - 2{b^2} = 1\\
a + b = 5
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a = 17\\
b = - 12
\end{array} \right. \to loai\\
\left\{ \begin{array}{l}
a = 3\\
b = 2
\end{array} \right.
\end{array} \right.\\
\Rightarrow x = 3 \to TM
\end{array}\)