Đáp án:
\(\left[ \begin{array}{l}
{V_{(I,2)}},I( - 4, - 2)\\
{V_{(I, - 2)}},I(4,2)
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
{V_{(I,k)}}((A,2)) = ((B,4))\\
\leftrightarrow {V_{(I,k)}}(A) = (B),{R_{(B,2)}} = |2|.{R_{(A,4)}} = |k|.{R_{(A,4)}}\\
\to k = \pm 2\\
+ )k = 2\\
\to {V_{(I,2)}}(A) = (B)\\
\leftrightarrow \overrightarrow {IB} = 2\overrightarrow {IA} \leftrightarrow \left\{ \begin{array}{l}
8 - x = 2(2 - x)\\
4 - y = 2(1 - y)
\end{array} \right. \to I( - 4, - 2)\\
+ )k = - 2\\
{V_{(I, - 2)}}(A) = (B)\\
\leftrightarrow \overrightarrow {IB} = - 2\overrightarrow {IA} \leftrightarrow \left\{ \begin{array}{l}
8 - x = - 2(2 - x)\\
4 - y = - 2(1 - y)
\end{array} \right. \to I(4,2)\\
\to \left[ \begin{array}{l}
{V_{(I,2)}},I( - 4, - 2)\\
{V_{(I, - 2)}},I(4,2)
\end{array} \right.
\end{array}\)