Đáp án đúng: C
Giải chi tiết:Ta có:
\(\begin{array}{l}f'\left( x \right) = \left( {{{\log }_{0,5}}\left( {6x - {x^2}} \right)} \right)'\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\left( {6x - {x^2}} \right)'}}{{\left( {6x - {x^2}} \right)\ln 0,5}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{6 - 2x}}{{\left( {6x - {x^2}} \right)\ln 0,5}}\end{array}\)
Khi đó: \(f'\left( x \right) > 0 \Leftrightarrow \frac{{6 - 2x}}{{\left( {6x - {x^2}} \right)\ln 0,5}} > 0\).
Do \(0,5 < 1 \Rightarrow \ln 0,5 < \ln 1 = 0\) \( \Rightarrow \left( * \right) \Leftrightarrow \frac{{6 - 2x}}{{6x - {x^2}}} < 0\).
Ta có bảng xét dấu:
Dựa vào bảng xét dấu \( \Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {3;6} \right)\).
Chọn C.