Đáp án đúng: A
Giải chi tiết:Vật (1): cano; Vật (2): dòng nước; Vật (3): bờ sông.
Thời gian cano đi từ bến A đến bến B là: \(t = \dfrac{{AB}}{{{v_{13}}}}\)
+ Cano đi xuôi dòng \( \Rightarrow \overrightarrow {{v_{12}}} \, \uparrow \uparrow \,\,\overrightarrow {{v_{23}}} \)
→ Độ lớn vận tốc của cano so với bờ sông là: \({v_{13}} = {v_{12}} + {v_{23}} = {v_{12}} + 5\,\,\left( {km/h} \right)\)
Thời gian đi xuôi dòng là: \({t_x} = \dfrac{{AB}}{{{v_{12}} + 5}} = 2\,\,\left( h \right)\,\,\,\,\,\,\,\,\left( * \right)\)
+ Cano đi ngược dòng \( \Rightarrow \overrightarrow {{v_{12}}} \, \uparrow \downarrow \,\,\overrightarrow {{v_{23}}} \,\,\,\left( {{v_{12}} > {v_{23}}} \right)\)
→ Độ lớn vận tốc của cano so với bờ sông là: \({v_{13}}' = {v_{12}} - {v_{23}} = {v_{12}} - 5\,\,\left( {km/h} \right)\)
Thời gian đi ngược dòng là: \({t_n} = \dfrac{{AB}}{{{v_{12}} - 5}} = 3\,\,\left( h \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {**} \right)\)
Từ (1) và (2) ta có: \(\dfrac{{\left( * \right)}}{{\left( {**} \right)}} \Leftrightarrow \dfrac{{{v_{12}} - 5}}{{{v_{12}} + 5}} = \dfrac{2}{3} \Rightarrow {v_{12}} = 25\,\left( {km/h} \right)\)
Chọn A