Đáp án:
a) Quy đồng mẫu thành dạng $(a + b)^{2}$ . $(a-b)^{2}$
$\frac{a}{(a+b)^2}$ = $\frac{a(a-b)^2}{(a+b)^2.(a-b)^2}$
$\frac{a}{(a-b)^2}$ = $\frac{a(a+b)^2}{(a+b)^2.(a-b)^2}$
b) Quy đồng mẫu thành dạng $12x^{3}y^4$
$\frac{x-2}{xy^2}$ = $\frac{12x^2y^2.(x-2)}{12x^2y^2.xy^2}$ = $\frac{12x^3y^2 - 24x^2y^2}{12x^3y^4}$
$\frac{1-x}{12x^3y^4}$ (đã quy đồng)
c) $\frac{7x-1}{2x^2+6x}$ = $\frac{7x-1}{2x(x+3)}$
$\frac{5-x}{x^2-9}$ = $\frac{5-x}{(x-3)(x+3)}$
Quy đồng mẫu thành dạng 2x(x - 3)(x + 3)
$\frac{7x-1}{2x(x+3)}$ = $\frac{7x-1}{2x(x+3)}$ = $\frac{(7x-1)(x-3)}{2x(x+3)(x-3)}$
$\frac{5-x}{(x-3)(x+3)}$ = $\frac{2x(5-x)}{2x(x-3)(x+3)}$ = $\frac{10x - 2x^2}{2x(x-3)(x+3)}$
Bài 2:
a) A = $\frac{5}{2x-4}$ = $\frac{5}{2(x-2)}$
B = $\frac{4}{3x-9}$ = $\frac{4}{3(x-3)}$
C = $\frac{7}{10-5x}$ = $\frac{7}{5(2-x)}$ = - $\frac{7}{5(x-2)}$
Quy đồng mẫu thành dạng 30(x - 2)(x - 3)
A = $\frac{5}{2(x-2)}$ = $\frac{5.15(x-3)}{2(x-2).15(x-3)}$ = $\frac{75x-225}{30(x-2)(x-3)}$
B = $\frac{4}{3(x-3)}$ = $\frac{4.10(x-2)}{3(x-3).10(x-2)}$ = $\frac{40x-80}{30(x-2)(x-3)}$
C = - $\frac{7}{5(x-2)}$ = - $\frac{7.6(x-3)}{5(x-2).6(x-3)}$ = - $\frac{42x-126}{30(x-2)(x-3)}$
b) D = $\frac{x^2}{x^2-1}$ = $\frac{x^2}{(x-1)(x+1)}$
E = $\frac{3x-1}{x^3+2x^2+x}$ = $\frac{3x-1}{x(x^2+2x+1)}$ = $\frac{3x-1}{x(x+1)^2}$
F = $\frac{2x+1}{x^3}$ = $\frac{(2x+1)(x+1)^2(x-1)}{x^3(x+1)^2(x-1)}$
Quy đồng mẫu thành dạng $x^{3}$ $(x+1)^{2}$(x - 1)
D = $\frac{x^2}{(x-1)(x+1)}$ = $\frac{x^2.x^3(x+1)}{x^3(x-1)(x+1)^2}$ = $\frac{x^6(x+1)}{x^3(x-1)(x+1)^2}$
E = $\frac{3x-1}{x(x+1)^2}$ = $\frac{x^2(3x-1)(x-1)}{x(x+1)^2.x^2(x-1)}$ = $\frac{x^2(3x-1)(x-1)}{x^3(x+1)^2(x-1)}$
F = $\frac{2x+1}{x^3}$ = $\frac{(2x+1)(x+1)^2(x-1)}{x^3(x+1)^2(x-1)}$