Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng với B, C, H). Gọi P, Q lần lượt là hình chiếu vuông góc vủa M lên AB và AC.
a) Chứng minh tứ giác APMQ nội tiếp được trong đường tròn và xác định tâm O của đường tròn này.
b) Chứng minh \(OH \bot PQ\).
c) Chứng minh \(MP + MQ = AH\).
A.
B.
C.
D.