Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D.
a) Chứng minh: \(\widehat {COD} = {90^0}\)
b) Gọi K là giao điểm của BM với Ax. Chứng minh: \(\Delta KMO \sim \Delta AMD\)
c) Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.
A.
B.
C.
D.