Đáp án: $A=8$
Giải thích các bước giải:
$\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}$
$\rightarrow \dfrac{x+y}{z}-1=\dfrac{y+z}{x}-1=\dfrac{z+x}{y}-1$
$\rightarrow \dfrac{x+y}{z}=\dfrac{y+z}{x}=\dfrac{z+x}{y}=\dfrac{x+y+y+z+z+x}{x+y+z}=2$
$\rightarrow \dfrac{x+y}{z}.\dfrac{y+z}{x}.\dfrac{z+x}{y}=2^3$
$\rightarrow \dfrac{(x+y)(y+z)(z+x)}{xyz}=8$