Ta có:
\(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
\(\Leftrightarrow\left(ab+ac\right)\left(b+c\right)+b\left(c^2+2ac+a^2\right)+c\left(a^2+2ab+b^2\right)=4abc\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+\left(bc^2+cb^2\right)+\left(ba^2+ca^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[b\left(c+a\right)+a\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)
Ta lại có:
\(a^{2013}+b^{2013}+c^{2013}=1\)
Với : \(b=-c\Leftrightarrow a^{2013}-c^{2013}+c^{2013}=1\Leftrightarrow a=1\)
\(\Rightarrow M=\dfrac{1}{a^{2015}}+\dfrac{1}{b^{2015}}+\dfrac{1}{c^{2015}}=\dfrac{1}{1}+\dfrac{-1}{c^{2015}}+\dfrac{1}{c^{2015}}=1\)
Mà do \(a,b,c\) bình đẳng nên với trường hợp nào đều là \(M=1\)