Giải thích các bước giải:
\(\begin{array}{l}
{x^3} - x - 3 = y(x - 2)\\
\to \frac{{{x^3} - x - 3}}{{x - 2}} \in Z\\
\to {x^2} + 2x + 3 + \frac{3}{{x - 2}} \in Z\\
\to \frac{3}{{x - 2}} \in Z\\
\to x - 2 \in U\left( 3 \right)\\
\to \left[ \begin{array}{l}
x - 2 = 3\\
x - 2 = - 3\\
x - 2 = 1\\
x - 2 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 5\\
x = - 1\\
x = 3\\
x = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
y = 39\\
y = 1\\
y = 21\\
y = 3
\end{array} \right.
\end{array}\)