Đáp án:
Giải thích các bước giải:
$\begin{gathered} a)\,P = (\frac{{\sqrt a }}{{3 + \sqrt a }} + \frac{{a + 9}}{{9 - a}}):(\frac{{3\sqrt a + 1}}{{a - 3\sqrt a }} - \frac{1}{{\sqrt a }}) \hfill \\ = \frac{{\sqrt a (3 - \sqrt a ) + a + 9}}{{(3 + \sqrt a )(3 - \sqrt a )}}:\frac{{3\sqrt a + 1 - (\sqrt a - 3)}}{{\sqrt a (\sqrt a - 3)}} \hfill \\ = \frac{{ - 2a + 3\sqrt a + a + 9}}{{(3 + \sqrt a )(3 - \sqrt a )}}.\frac{{\sqrt a (\sqrt a - 3)}}{{2\sqrt a + 4}} \hfill \\ = \frac{{(a - 3\sqrt a - 9)\sqrt a }}{{(2\sqrt a + 4)(\sqrt a + 3)}} \hfill \\ b)\,Khi\,a = 3 - 2\sqrt 2 \hfill \\ = > \,a = {\left( {\sqrt 2 } \right)^2} - 2\sqrt 2 + 1 = {\left( {\sqrt 2 - 1} \right)^2} \hfill \\ = > \,\sqrt a = \sqrt 2 - 1(do\,\sqrt 2 - 1 > 0) \hfill \\ \hfill \\ \end{gathered} $