Cho hàm số \(y=f\left( x \right)=\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}.\) Tính \(\underset{x\to 0}{\mathop{\lim }}\,\,f\left( x \right).\) A.\(\frac{1}{12}\) B.\(\frac{13}{12}\) C. \(+\infty \) D.\(\frac{10}{11}\)
Đáp án đúng: B Giải chi tiết:Cách 1: CALC Cách 2: \(\underset{x\to 0}{\mathop{\lim }}\,\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\frac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{2\left[ \frac{\left( 1+x \right)-1}{\sqrt{1+x}+1} \right]+\frac{8-\left( 8-x \right)}{4+2\sqrt[3]{8-x}+\sqrt[3]{{{\left( 8-x \right)}^{2}}}}}{x}\) \(=\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{2}{\sqrt{1+x}+1}+\frac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{{{\left( 8-x \right)}^{2}}}} \right)=\frac{13}{12}\) Đáp án B