chứng minh \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 18\)
Ta có: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}=2.\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\) (1)
\(\left(1\right)< 2.\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\right)\)\(=2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)\(=2\left(-\sqrt{1}+\sqrt{100}\right)=2\left(-1+10\right)=18\)
Vậy:...
cho a,b,c>0 thỏa mãn abc=1
cmr: A=\(\dfrac{1}{\sqrt{1+8a}}\) + \(\dfrac{1}{\sqrt{1+8b}}\) +\(\dfrac{1}{\sqrt{1+8c}}\) \(>=\) 1
Giải phương trình:
a) \(x^2+x=36-12\sqrt{x+1}\)
b) \(4\sqrt{x+1}=x^2-5x+14\)
c) \(\dfrac{\left(\sqrt{x}-1\right)^2}{2}=2\sqrt{x}-4-\sqrt{x-9}\)
Giải phương trình sau:
\(\sqrt{x-1+2\sqrt{x-2}}+x+1=5\sqrt{x-2}\)
rút gọn biểu thức
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\dfrac{1}{\sqrt{a}}\right)\)
Tìm m để phương trình sau vô nghiệm:
\(\left(x+1\right)^4+\left(x-3\right)^4=m+2\)
Chứng minh rằng nếu \(x^2+y^2=1\) thì \(\left|x+y\right|\le\sqrt{2}\)
cho 3 số thực a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) ,chứng minh:
\(\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le1\)
dấu đẳng thức xảy ra khi nào ?
Cho a,b,c là 3 số dương t/m:\(\dfrac{1}{a+b+1}\)+\(\dfrac{1}{b+c+1}\)+\(\dfrac{1}{a+c+1}\)=2.tìm Max của: (a+b)(b+c)(c+a)
Cho biểu thức \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
a) Nêu điều kiện xác định và rút gọn A b) Tìm tất cả các giá trị của x để A\(>\dfrac{1}{2}\)
c) Tìm tất cả các giá trị cuẩ x để \(B=\dfrac{7}{3}A\) đạt giá trị nguyên
tim GTNN cua
\(a-\sqrt{a}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến