Tìm nguyên hàm
$\int{{\frac{{\ln x}}{{x\sqrt{{1+\ln x}}}}dx}}$
A. $\frac{1}{2}\left( {\frac{1}{3}\sqrt{{{{{\left( {1+\ln x} \right)}}^{3}}}}-\sqrt{{1+\ln x}}} \right)+C.$
B. $\displaystyle \left( {\frac{1}{3}\sqrt{{{{{\left( {1+\ln x} \right)}}^{3}}}}-\sqrt{{1+\ln x}}} \right)+C.$
C. $\displaystyle 2\left( {\frac{1}{3}\sqrt{{{{{\left( {1+\ln x} \right)}}^{3}}}}-\sqrt{{1+\ln x}}} \right)+C.$
D. $2\left( {\frac{1}{3}\sqrt{{{{{\left( {1+\ln x} \right)}}^{3}}}}+\sqrt{{1+\ln x}}} \right)+C.$