Tìm nguyên hàm
$\displaystyle \int{{\frac{{({{e}^{{2x}}}-24{{e}^{x}})}}{{{{e}^{x}}\sqrt{{{{e}^{x}}+1}}+5{{e}^{x}}-3\sqrt{{{{e}^{x}}+1}}-15}}dx.}}$
A. $3\ln \left| {\sqrt{{{{e}^{x}}+1}}-2} \right|-7\ln \left| {\sqrt{{{{e}^{x}}+1}}+2} \right|+C.$   
B. $2\sqrt{{{{e}^{x}}+1}}-3\ln \left| {\sqrt{{{{e}^{x}}+1}}-2} \right|-7\ln \left| {\sqrt{{{{e}^{x}}+1}}+2} \right|+C.$ 
C. $2\sqrt{{{{e}^{x}}+1}}+3\ln \left| {\sqrt{{{{e}^{x}}+1}}-2} \right|+7\ln \left| {\sqrt{{{{e}^{x}}+1}}+2} \right|+C.$  
D. $2\sqrt{{{{e}^{x}}+1}}-3\ln \left| {\sqrt{{{{e}^{x}}+1}}-2} \right|+7\ln \left| {\sqrt{{{{e}^{x}}+1}}+2} \right|+C.$

Các câu hỏi liên quan