Cho ltrụ đứng ABCA'B'C' có AC=a BC=2a, góc ACB=120°. Góc giữa A'C và (ABB'A') bằng 30°. M là trung điểm cua BB'. Tính khoang cach từ A' đên ACM
đl hàm số cosin cho \(\Delta ACB\Rightarrow AB=a\sqrt{7}\)
va \(S_{\Delta ACB}=a^2\dfrac{\sqrt{3}}{2}\Rightarrow CI=a\dfrac{\sqrt{21}}{7}\)
\(\Delta A'CI\)vuông tại I,có \(\widehat{CA'}I=30^0\Rightarrow CA'=2a\dfrac{\sqrt{21}}{7}\Rightarrow AA'=a\dfrac{\sqrt{35}}{7}\)\(\Rightarrow BM=a\dfrac{\sqrt{35}}{14}\)
\(\Delta ABM\Rightarrow AM=a\dfrac{\sqrt{1407}}{14}\)
goi H la hinh chieu cua A' len(ACM) \(\Rightarrow A'H\perp AM\)
ke MK\(\perp\) AA', trong tam giác AA'M cho ta : A'H.ÀM=MK.AA'\(\Rightarrow A'H=\dfrac{a\sqrt{7}.\dfrac{\sqrt{35}}{7}a}{a\dfrac{\sqrt{1407}}{14}}=\dfrac{a14\sqrt{5}}{\sqrt{1407}}\)
Bài 5 (SGK trang 119)
Cho hình lập phương ABCD.A'B'C'D' cạnh a
a) Chứng minh rằng B'D vuông góc với mặt phẳng (BA'C')
b) Tính khoảng cách giữa hai mặt phẳng (BA'C') và (ACD')
c) Tính khoảng cách giữa hai đường thẳng BC' và CD'
Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AD=2AB=2a. SA=2a và SA vuông góc đáy.M,N lần lượt là trung điểm SB&SD. Tìm khoảng cách từ S đến mp(AMN).
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA=a\(\sqrt{2}\)
a) CMR các mặt bên của hình chóp là những tam giác vuông.
b) CMR (SAC) vuông góc với (SBD)
c)Tính góc giữa SC và mp (SAB)
d)Tính góc giữa hai mp(SBD) và (ABCD)
e)Tính khoảng cách giữa điểm A và mp (SCD).
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân tại C, AB=2a, AA'=a và BC' tạo với mp (ABB'A') 1 góc 60 độ
Gọi N là trung điểm AA', M là trung điểm BB'
Tính d(M,(BC'N))
Hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, BC=2a, AA'=a. Lấy điểm M trên cạnh AD sao cho AM=3MD
1, tính khoảng cách từ B đến mp ACB'
2, tính khoảng cách từ M đến mp AB'C
cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A.AB=3a, BC=5a. hình chiếu vu6ong góc của B' lên (ABC) là tâm đường tròn nội tiếp tam giác ABC . góc giữa (ABB'A') và (ABC) bẳng 60 độ. tính V lăng trụ và khoảng cách từ B' đến (ACC'A')
Cho hình chóp S.Abcd có đáy ABcd là hình thang vuông tại A va D, AB=2BC=2a, AD= 3a. Hình chiếu vuông góc H của S lên mặt phẳng (Abcd) là trung điểm của cạnh Ab. Tính theo a thể tích S.Abcd và khoảng cách từ A đến mặt phẳng (scd) biết Sd=acăn3
Cho h/c S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB nằm trong mặt phẳng vuông góc với đáy, tam giác SAB vuông tại S, SA=a . Tính thể tích khối chóp và d(AB,SC) =?
Cảm ơn trước nha!!
Bài 3.27 (Sách bài tập - trang 153)
a) Cho hình lập phương ABCD. A'B'C'D' cạnh a. Chứng minh rằng đường thẳng AC' vuông góc với mặt phẳng (A'BD) và mặt phẳng (ACC'A') vuông góc với mặt phẳng (A'BD)
b) Tính đường chéo AC' của hình lập phương đã cho
1. cho hình lập phương abcd.a'b'c'd' có cạnh là a. hỏi: tính góc giữa ac và da. cmr: bd vuông góc với ac?
2. cho tứ diện abcd. gọi m, n lần luot là trung điểm của bc và ad; ab=cd=2a; mn= a căn 3. tính góc giữa ab và cd
3. cho hình chóp s.abcd có sa=sb=sc=ab=ac=a; bc=a căn 2. tính góc giữa hai đt ab và sc
làm giúp mình mới, chiều mai mình cần r
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến