Giải thích các bước giải:
b.Từ phương trình $\rightarrow x>0$
$\rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+x+\dfrac{1}{9.13}+..+x+\dfrac{1}{397.401}=101x$
$\rightarrow 100x+\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+..+\dfrac{1}{397.401}=101x$
$\rightarrow 100x+\dfrac{1}{4}.(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+..+\dfrac{4}{397.401})=101x$
$\rightarrow 100x+\dfrac{1}{4}.(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+..+\dfrac{1}{397}-\dfrac{1}{401})=101x$
$\rightarrow 100x+\dfrac{1}{4}.(1-\dfrac{1}{401})=101x$
$\rightarrow x=\dfrac{1}{4}.(1-\dfrac{1}{401})$