Đáp án:
$1,$
$a, x² + 6xy + 9y² $
$= x² + 2.3xy + (3y)² $
$= (x + 3y)² $
$b, 25 - 20x + 16x² $
$= 5² - 2.5.4x + (4x)² $
$= (5 - 4x)² $
$c, (2x + 3y)(2x - 3y) $
$= (2x)² - (3y)² $
$= 4x² - 9y² $
$d, x² + 2x + 1 $
$= (x + 1)² $
$e, 9x² + y² + 6xy $
$= 9x² + 6xy + y² $
$= (3x + y)² $
$f, x² - x + \frac{1}{4} $
$= x² - 2.\frac{1}{2}x + \frac{1}{4} $
$= (x - \frac{1}{2})² $
$2,$
$a, (x - 2)² - 25 = 0 $
$⇔ (x - 2)² - 5² = 0 $
$⇔ (x - 2 - 5)(x - 2 + 5) = 0 $
$⇔ (x - 7)(x + 3) = 0 $
$⇔$ \(\left[ \begin{array}{l}x-7=0\\x+3=0\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)
$b, (x² + 6x + 9) - (4x² + 4x + 1) = 0 $
$⇔ (x + 3)² - (2x + 1)² = 0 $
$⇔ (x + 3 - 2x - 1)(x + 3 + 2x + 1) = 0 $
$⇔ (2 - x)(3x + 4) = 0 $
$⇔$ \(\left[ \begin{array}{l}2-x=0\\3x+4=0\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=2\\x=\frac{-4}{3}\end{array} \right.\)
$c, x² + 4x + 3 = 0 $
$⇔ x² + 4x + 4 - 1 = 0 $
$⇔ (x + 2)² - 1 = 0 $
$⇔ (x + 2 - 1)(x + 2 + 1) = 0 $
$⇔ (x + 1)(x + 3) = 0 $
$⇔$ \(\left[ \begin{array}{l}x+1=0\\x+3=0\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=-1\\x=-3\end{array} \right.\)
$d, x² - 6x + 8 = 0 $
$⇔ x² - 6x + 9 - 1 = 0 $
$⇔ (x - 3)² - 1 = 0 $
$⇔ (x - 3 - 1)(x - 3 + 1) = 0 $
$⇔ (x - 4)(x - 2) = 0 $
$⇔$ \(\left[ \begin{array}{l}x-4=0\\x-2=0\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=4\\x=2\end{array} \right.\)
$3,$
$A = 4x² + 4x + 15 $
$A = 4x² + 4x + 1 + 14 $
$A = (2x + 1)² + 14 ≥ 14 $
$Amin = 14 ⇔ (2x + 1)² = 0 $
$ ⇔ x = \frac{-1}{2} $
$B = 9x² + 6x - 5 $
$B = 9x² + 6x + 1 -6 $
$B = (3x + 1)² -6 ≥ -6 $
$Bmin = -6 ⇔ (3x - 1)² = 0$
$⇔ x = \frac{-1}{3}$