Trong mặt phẳng (P) cho tam giác ABC. M là một điểm bất kì thuộc mặt phẳng (P). Chứng minh rằng biểu thức \(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M ?
\(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}=3\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+2\left(\overrightarrow{MC}-\overrightarrow{MB}\right)\) \(=3\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+2\left(\overrightarrow{MC}+\overrightarrow{BM}\right)=3\overrightarrow{BA}+2\overrightarrow{BC}\) (không phụ thuộc vào vị trí điểm M).