Đáp án:
Giải thích các bước giải:
2 a) Tg ABD = Tg ACE ( CH - GN )
b) Có CE vg ABB tại E, BD vg AC tại D, K là giao điểm của CE và BD ==> K là trực tâm của tg ABC ==> AK vg BCC mà tg ABC cân tại A ==> AK là p/g
3 a) Tg AEC = ADB (CH - GN) ==> EC = BD
==> Tg BEC = CDB (CH - CGV)
b) Tg BEC = CDB ==> BE = DC
Mà AB = AC ==> AE = AD ==> Tg AED cân tại A
c) Có K là giao điểm của CE và BD
==> K là trực tâm ==> AK vg BC
Xét tg ABC cân tại A, có AI là trung tuyến ==> AI là đường cao
==> AI vuông góc BC
Mà AK vg BC
==> A, K, I thẳng hàng (đpcm)