a/ \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-4\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60-5=0\)
\(\Leftrightarrow30x-60=0\)
\(\Leftrightarrow30x=60\)
\(\Leftrightarrow x=2\)
vậy x=2
b/ \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(\Leftrightarrow3x-4x^2+6-8x=x^2+4x+4\)
\(\Leftrightarrow x^2+4x^2+4x+18x-3x+4-6=0\)
\(\Leftrightarrow5x^2+9x-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-2\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5}\) hoặc \(x=-2\)
c/ \(x^2\left(x^2+1\right)-x^2-1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)=0\)
vì x2+1 >0 nên x2 - 1 = 0 \(\Rightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
vậy \(x=1\) hoặc \(x=-1\)