a)x3y3+x2y2+4
=x3y3−x2y2+2xy+2x2y2−2xy+4
=xy(x2y2−xy+2)+2(x2y2−xy+2)
=(xy+2)(x2y2−xy+2)
b)x4+x3+6x2+5x+5
=x4+x2+x2+5x2+5x+5
=x2(x2+x+1)+5(x2+x+1)
=(x2+5)(x2+x+1)
c)x4−2x3−12x2+12x+36
=x4−2x3−6x2−6x2+12x+36
=x2(x2−2x−6)−6(x2−2x−6)
=(x2−6)(x2−2x−6)
d)x8y8+x4y4+1
=x8y8+2x4y4+1−x4y4
=(x4y4+1)2−(x2y2)2
=(x4y4+1+x2y2)(x4y4+1−x2y2)
=(x4y4+2x2y2+1−x2y2)(x4y4+1−x2y2)
=((x2y2+1)2−(xy)2)(x4y4+1−x2y2)
=(x2y2+1−xy)(x2y2+1+xy)(x4y4+1−x2y2)