a. (x+y+4)2- (2x+3y-1)2
b. x16-1
a. (x+y+4)2−(2x+3y−1)2=(x+y+4−2x−3y+1)(x+y+4+2x+3y−1)=(5−x−2y)(3x+4y+3)\left(x+y+4\right)^2-\left(2x+3y-1\right)^2=\left(x+y+4-2x-3y+1\right)\left(x+y+4+2x+3y-1\right)=\left(5-x-2y\right)\left(3x+4y+3\right)(x+y+4)2−(2x+3y−1)2=(x+y+4−2x−3y+1)(x+y+4+2x+3y−1)=(5−x−2y)(3x+4y+3)b. x16−1=(x8)2−12=(x8−1)(x8+1)=[(x4)2−12](x8+1)=(x4−1)(x4+1)(x8+1)=(x2−1)(x2+1)(x4+1)(x8+1)=(x−1)(x+1)(x2+1)(x4+1)(x8+1)x^{16}-1=\left(x^8\right)^2-1^2=\left(x^8-1\right)\left(x^8+1\right)=\left[\left(x^4\right)^2-1^2\right]\left(x^8+1\right)=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)x16−1=(x8)2−12=(x8−1)(x8+1)=[(x4)2−12](x8+1)=(x4−1)(x4+1)(x8+1)=(x2−1)(x2+1)(x4+1)(x8+1)=(x−1)(x+1)(x2+1)(x4+1)(x8+1)
Phân tích đa thức thành nhân tử:
a3-b3+c3 +3abc
cho x+y+z=0 . cm :x3+x2z+y2z-xyz+y3=0
tìm x biết 4x(5x-1)+10x=2
1 tim x
2x^4-6x^3+x^2+6x-3=0
( x + y )^3 - x^3 - y^3
tim x, y thuoc Z : x2+102=y2
phân tích :
a) 2x2-2xy-5x+5y
Phân tích đa thức thành nhân tử: 3x^2+22xy+11x+37y+7y^2+10
phân tích đa thức thành nhân tử
a)x^2-4x+3
b)x^2+6xy+5y^2
c)x^2+3x-18
d)8x^2+30xy+7y^2
e)x^3-11x^2+30x
f)x^3+8x^2y+15xy^2
Phân tích đa thức thành nhân tử
1) x^3 - 7x + 6 2) x^3 - 9x^2 + 6x + 16 3) x^3 - 6x^2 - x + 30 4) 2x^3 - x^2 + 5x + 3 5) 27x^3 - 27x^2 + 18x - 4 6) x^2 + 2xy + y^2 - x - y - 12 7) (x + 2)(x +3)(x + 4)(x + 5) - 24 8) 4x^4 - 32x^2 + 1 9) 3(x^4 + x^2 + 1) - (x^2 + x + 1)^2 10) 64x^4 + y^4 11) a^6 + a^4 + a^2b^2 + b^4 - b^6 12) x^3 + 3xy + y^3 - 1 13) 4x^4 + 4x^3 + 5x^2 + 2x + 1 14) x^8 + x + 1 15) x^8 + 3x^4 + 4 16) 3x^2 + 22xy + 11x + 37y + 7y^2 +10 17) x^4 - 8x + 63
đúng nhiều nhất sẽ đc tick