Đạo hàm của hàm số \(y=f(x)=\dfrac{x}{{{x}^{2}}+1}+\sqrt[3]{{{x}^{2}}+2}\) là
A.\[ - \frac{{{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} + \frac{{2x}}{{3.\sqrt[3]{{{{\left( {{x^2} + 2} \right)}^2}}}}} + \frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}\]
B.\(-\dfrac{2{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}+\dfrac{2x}{\sqrt[3]{{{\left( {{x}^{2}}+2 \right)}^{2}}}}-\dfrac{1}{{{x}^{2}}+1}\)
C.\(-\dfrac{2{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}-\dfrac{2x}{3\sqrt[3]{{{\left( {{x}^{2}}+2 \right)}^{2}}}}+\dfrac{1}{{{x}^{2}}+1}\)
D.\(-\dfrac{{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}+\dfrac{2x}{3\sqrt[3]{{{\left( {{x}^{2}}+2 \right)}^{2}}}}-\dfrac{1}{{{x}^{2}}+1}\)