Giải thích các bước giải:
i.Ta có :
$I=\dfrac{9^3.7-27^2.3}{3^4.2+9^2.5}$
$\to I=\dfrac{(3^2)^3.7-(3^3)^2.3}{3^4.2+(3^2)^2.5}$
$\to I=\dfrac{3^6.7-3^6.3}{3^4.2+3^4.5}$
$\to I=\dfrac{3^6(7-3)}{3^4(2+5)}$
$\to I=\dfrac{3^6.4}{3^4.7}$
$\to I=\dfrac{3^2.4}{7}$
$\to I=\dfrac{36}{7}$
j.Ta có :
$J=\dfrac{3^2.64^2-12^2.16^2.19^0}{3+6+9+..+96+99}$
$\to J=\dfrac{3^2.(2^6)^2-(3.2^2)^2.(2^4)^2.1}{3+6+9+..+96+99}$
$\to J=\dfrac{3^2.2^{12}-3^2.2^4.2^8}{3+6+9+..+96+99}$
$\to J=\dfrac{3^2.2^{12}-3^2.2^{12}}{3+6+9+..+96+99}$
$\to J=\dfrac{0}{3+6+9+..+96+99}$
$\to J=0$