Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
a.\mathop {\lim }\limits_{x \to 2} = \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{4 + 4 + 4}}{{2 + 2}} = 3\\
d.\mathop {\lim }\limits_{x \to 0} \frac{{{x^3}}}{{x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}\\
= \frac{0}{{1.2}} = 0\\
e.\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{x\left( {x + 2} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{x}{{x + 1}} = \frac{{ - 2}}{{ - 2 + 1}} = - 2
\end{array}\)