Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d : 4x – 2y – 8 = 0
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ xI ,yI của tâm I có thể là xI = yI hoặc xI = -yI
Đặt xI = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:
Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a) ta có:
4a – 2a – 8 = 0 => a = 4
Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:
(x – 4 )2 + (y – 4)2 = 42
x2 + y2 – 8x – 8y + 16 = 0
+ Trường hợp I(-a; a):
-4a – 2a – 8 = 0 => a =
Ta được đường tròn có phương trình:
+ =
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Lập phương trình đường tròn đi qua ba điểm: M(-2; 4); N(5; 5); P(6; -2)
Tìm tâm và bán kính của đường tròn :
x2 + y2 – 4x + 6y – 3 = 0.
Lập phương trình đường tròn (C) có đường kính AB với A(1; 1) và B(7; 5)
Lập phương trình đường tròn (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng d : x – 2y + 7 = 0
Lập phương trình đường tròn (C) có tâm I(-2; 3) và đi qua M(2; -3)
chứng minh rằng : đường thẳng (Δ) : 2x - y = 0 và đường tròn (C) : x2 + y2 - 4x + 2y - 1 = 0 cắt nhau . Tính độ dài dây cung .
Từ một điểm S ở ngoài đt (o) kẻ tiếp tuyến SA và một các tuyến SBC ( góc BAC <90) Phân giác góc BAC cắt BC tại D và cắt đt tại điểm thứ hai là E Cac tiếp tuyến của đt (o) tại C và E cắt nhau tại N. P là giao điểm AE và CN
CM a ) SA =SD B) EN//BC C) \(\frac{1}{CN}=\frac{1}{CD}+\frac{1}{CP}\) ANH CHỊ GIÚP E VỚI Ạ CÂU C Í Ở MATHONLINE KHÔNG AI GIÚP EM MỚI SANG ĐÂY
lập phương trình đường tròn có bán kính =1,tiếp xúc với trục hoành vầ có tâm nằm trên đường thẳng ;x+y-3=0
cho đường tròn (C) : x2 + y2 + 8x + 4y - 5 = 0 . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến (C) đi qua M(2;1).
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến