Đáp án:AH=12cm
Giải thích các bước giải:
Ta có AH⊥BC
⇒ \(\widehat{AHC}=\widehat{AHB}=90^{\circ}\)
Ta có: \(\widehat{ABC} +\widehat{ACB}=90^{\circ}\)
Mà \(\widehat{ABC}+ \widehat{BAH}=90^{\circ}\)
Nên \(\widehat{ACB}=\widehat{BAH}\)
Xét ΔAHC và ΔBHA có:
\(\widehat{AHC}=\widehat{AHB}= 90^{\circ}\)
\(\widehat{ACH}=\widehat{BAH}\)
⇒ΔAHC\( \sim\) ΔBHA (g-g)
⇒\(\frac{AH}{BH}=\frac{HC}{HA}\)
⇒ AH·AH=HB·HA=9·16=144
⇒ AH=\(\sqrt{144}\)= 12cm
Vậy AH=12cm