câu 1 :
2n + 1 chia hết cho n - 3
2n - 6 +7 chia hết cho n - 3
( 2n - 6 ) + 7 chia hết cho n - 3
Vì 2n-6 chia hết cho n-3 với mọi n
=> 7 chia hết cho n -3
=> n-3 thuộc { -7 ; -1 ; 1 ; 7 }
=> n thuộc { -4 ; 2 ; 4 ; 10 }
Câu 2:
Ta có: 2n + 1 ⋮ n-2
=> (2n-4)+5⋮ n-2
=> 2(n-2)+5⋮ n-2
Vì 2(n-2)⋮ n-2
=> 5⋮n-2 => n-2ϵƯ(5)= { +-1; +-5 }
ta có bảng sau : (nhìn ở phần hình ảnh)
Vậy n∈ { 3; 1;7;-3}
Câu 3 :
a/ S=1-2-3+4+5-6-7+8+....+2001-2002-2003+2004+2005
⇔S=(1-2-3+4)+.....+(2001-2002-2003+2004)+2005
⇔S=2005
b/
(nhìn ở phần hình ảnh )