Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 4\) và \(f'\left( x \right) = 2{\cos ^2}x + 1,\forall x \in \mathbb{R}\). Khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {f\left( x \right)dx} \) bằng
A.\(\dfrac{{{\pi ^2} + 16\pi + 16}}{{16}}.\)
B.\(\dfrac{{{\pi ^2} + 4}}{{16}}.\)
C.\(\dfrac{{{\pi ^2} + 14\pi }}{{16}}.\)
D.\(\dfrac{{{\pi ^2} + 16\pi + 4}}{{16}}.\)