Đáp án đúng: D
Giải chi tiết:
Gọi \({I_1},{I_2},{I_3}\) là tâm của các hình cầu, \(M,N,P\) là các tiếp điểm của các hình cầu (như hình vẽ), \(H,K,F\) là tiếp ba hình cầu với mặt phẳng (P) (như hình vẽ).
Xét mặt phẳng \(\left( {{I_1}{I_2}KH} \right)\), có:
\(\begin{array}{l}HK = \sqrt {{I_1}{I_2}^2 - {{\left( {{I_2}K - {I_1}H} \right)}^2}} \,\\\,\,\,\,\,\,\,\,\, = \sqrt {{{\left( {{R_1} + {R_2}} \right)}^2} - {{\left( {{R_1} - {R_2}} \right)}^2}} \\\,\,\,\,\,\,\,\, = \sqrt {4{R_1}{R_2}} = 2 \Rightarrow {R_1}{R_2} = 1\end{array}\)
Tương tự, \({R_1}{R_3} = \dfrac{9}{4},\,{R_2}{R_3} = 4\)
\( \Rightarrow {R_1}{R_2}{R_3} = \sqrt {1.\dfrac{9}{4}.4} = 3 \Rightarrow \left\{ \begin{array}{l}{R_1} = \dfrac{3}{4}\\{R_2} = \dfrac{4}{3}\\{R_3} = 3\end{array} \right.\).
Vậy \({R_1} + {R_2} + {R_3} = \dfrac{3}{4} + \dfrac{4}{3} + 3 = \dfrac{{61}}{{12}}\).
Chọn D.