Cho hàm số \(y = f(x)\) xác định, liên tục và có đạo hàm trên đoạn \(\left[ {a;b} \right]\). Xét các khẳng định sau:
1. Hàm số \(f\left( x \right)\) đồng biến trên \((a;b)\) thì \(f'(x) > 0,\forall x \in \left( {a;b} \right)\)
2. Giả sử \(f\left( a \right) > f\left( c \right) > f\left( b \right),\forall c \in \left( {a,b} \right)\) suy ra hàm số nghịch biến trên \(\left( {a;b} \right)\)
3. Giả sử phương trình \(f'(x) = 0\) có nghiệm là \(x = m\) khi đó nếu hàm số \(f(x)\) đồng biến trên \(\left( {m,b} \right)\) thì hàm số \(f\left( x \right)\) nghịch biến trên \(\left( {a,m} \right).\)
4. Nếu \(f'(x) \ge 0,\forall x \in \left( {a,b} \right)\), thì hàm số đồng biến trên \(\left( {a,b} \right)\)
Số khẳng định đúng trong các khẳng định trên là:
A.\(1\)
B.\(0\)
C.\(3\)
D.\(4\)

Các câu hỏi liên quan