Cho \(\int\limits_0^2 {f\left( x \right)dx = - 3} ,\)\(\int\limits_0^5 {f\left( x \right)dx = 7} \). Khi đó \(\int\limits_2^5 {f\left( x \right)dx} \) bằng: A.\(3\) B.\(4\) C.\(7\) D.\(10\)
Phương pháp giải: Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)d} x + \int\limits_b^c {f\left( x \right)d} x = \int\limits_a^c {f\left( x \right)d} x\). Giải chi tiết:Ta có \(\begin{array}{l}\int\limits_0^2 {f\left( x \right)dx} + \int\limits_2^5 {f\left( x \right)dx} = \int\limits_0^5 {f\left( x \right)dx} \\ \Rightarrow - 3 + \int\limits_2^5 {f\left( x \right)dx} = 7\\ \Leftrightarrow \int\limits_2^5 {f\left( x \right)dx} = 7 - \left( { - 3} \right) = 10.\end{array}\) Chọn D.