A=1.2.3+3.4.5+5.6.7+...+99.100.101
B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.101^2
Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101
A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + = + 99.101 (103 - 3)
A = (1.3.5 + 3.5.7 + 5.7.9 + --.. + 99.101.103) - (1.3.3 + 3.5.3 + -... + 99.101.3)
A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + -.. + 99.101)
A = 13517400 - 3.171650
A = 13002450
cho a>=1/2 và a/b>1 . chứng minh (2a3 + 1)/(4b(a-b))>=3
Áp dụng BĐT Bunhia
1. Chứng minh các BĐT sau
a. \(3a^2+4b^2\ge7,với3a+4b=7\)
b. \(3a^2+5b^2\ge\frac{735}{47},với2a-3a=7\)
c. \(7a^2+11b^2\ge\frac{2464}{137},với3a-5b=8\)
d. \(a^2+b^2\ge\frac{4}{5},vớia+2b=2\)
2. Chứng minh các BĐT sau
a. \(a^2+b^2\ge\frac{1}{2},vớia+b\ge1\)
b. \(a^3+b^3\ge\frac{1}{4},vớia+b\ge1\)
c.\(a^4+b^4\ge\frac{1}{8},vớia+b=1\)
d. \(a^4+b^4\ge2,vớia+b=2\)
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
Áp dụng BĐT Cô-si
Cho a,b,c\(\ge0\). Chứng minh các BĐT sau
a. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
b. \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia,b,c\ge0\)
1. Ap dụng BĐT Cô-si để tìm GTNN của các biểu thức sau
a. \(y=\frac{x}{2}+\frac{18}{x},x\ge0\)
b.\(y=\frac{x}{2}+\frac{2}{x-1},x\ge1\)
c.\(y=\frac{3x}{2}+\frac{1}{x+1},x\ge-1\)
d. \(y=\frac{x}{3}+\frac{5}{2x-1},x\ge\frac{1}{2}\)
e. y \(=\frac{x}{1-x}+\frac{5}{x},0\le x\le1\)
f. \(y=\frac{x^3+1}{x^2},x\ge0\)
g. \(y=\frac{x^2+4x+4}{x},x\ge0\)
1. Cho a,b \(\ge\) 0. Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}\left(1\right)\). Áp dụng chứng minh các BĐT sau
a. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a,b,c\ge0\right)\)
b. \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
Áp BĐT Cô-si
1. Cho a,b,c \(\ge\) 0. Chứng minh các BĐT sau
b. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
c. \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{c}{c+a}\le\frac{a+b+c}{2}\)
d. \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Tìm x biết:
a/ (152\(\frac{2}{4}\) - 148\(\frac{3}{8}\)) : 0,2= x:0,3
b/ (85\(\frac{7}{30}\) -83\(\frac{5}{18}\) ) : 2\(\frac{2}{3}\) = 0,01.x:4
c/ \(\frac{x-1}{x+5}=\frac{6}{7}\)
d/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
e/ \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}và3x+2y-2z=186\)
32 + 33 + 34 + 35 -. + 213 + +214 + 215
Giúp vs mn ơi, cháy nhà đế nơi rồi:
Tìm m để \(\sqrt{x}+\sqrt{4-x}=m\)có nghiệm duy nhất
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến