Đáp án đúng: B
Phương pháp giải:
Chứng minh \(\sqrt {2{x^2} + x + 1} \le x + 1\) luôn đúng với các số không âm \(x\) thỏa mãn \(x + y + z = 1\). Từ đó tìm giá trị lớn nhất của biểu thức \(Q\).Giải chi tiết:Vì \(x,\,\,y,\,\,z\) là các số không âm và \(x + y + z = 1\) nên \(0 \le x,\,y,\,\,z \le 1\).
Chứng minh \(\sqrt {2{x^2} + x + 1} \le x + 1\).
\(\begin{array}{l}\sqrt {2{x^2} + x + 1} \le x + 1\\ \Leftrightarrow {\left( {\sqrt {2{x^2} + x + 1} } \right)^2} \le {\left( {x + 1} \right)^2}\\ \Leftrightarrow 2{x^2} + x + 1 \le {x^2} + 2x + 1\\ \Leftrightarrow 2{x^2} + x + 1 - {x^2} - 2x - 1 \le 0\\ \Leftrightarrow {x^2} - x \le 0\\ \Leftrightarrow x\left( {x - 1} \right) \le 0\end{array}\)
Ta có: \(x\left( {x - 1} \right) \le 0\) luôn đúng với \(0 \le x \le 1\).
Chứng minh tương tự ta có: \(\left\{ \begin{array}{l}\sqrt {2{y^2} + y + 1} \le y + 1\\\sqrt {2{z^2} + z + 1} \le x + 1\end{array} \right.\)
\( \Rightarrow Q = \sqrt {2{x^2} + x + 1} + \sqrt {2{y^2} + y + 1} + \sqrt {2{z^2} + z + 1} \)\( \le \left( {x + 1} \right) + \left( {y + 1} \right) + \left( {z + 1} \right)\)\( = \left( {x + y + z} \right) + 3\)
Mà \(x + y + z = 1\) nên \(Q \le 4\).
Dấu “\( = \)” xảy ra \( \Leftrightarrow \left[ \begin{array}{l}x = y = 0,\,\,z = 1\\x = z = 0,\,\,y = 1\\y = z = 0,\,\,x = 1\end{array} \right.\)
Vậy \(Q\) đạt giá trị lớn nhất bằng \(4\) khi \(\left( {x;y;z} \right) \in \left\{ {\left( {0;\,\,0;\,\,1} \right),\,\,\left( {0;\,\,1;\,\,0} \right),\,\,\left( {1;\,\,0;\,\,0} \right)} \right\}\).
Chọn B.