Đáp án:
$\begin{array}{l}
a)\left( d \right)//\left( {d'} \right)\\
\Rightarrow \left\{ \begin{array}{l}
2m + 1 = 2\\
2k - 3 \ne 3k
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
m = \frac{1}{2}\\
k \ne - 3
\end{array} \right.\\
b)\left( d \right)\,cắt\,\left( {d'} \right)\\
\Rightarrow 2m + 1 \ne 2\\
\Rightarrow m \ne \frac{1}{2}\\
c)\left( d \right) \bot \left( {d'} \right)\\
\Rightarrow \left( {2m + 1} \right).2 = - 1\\
\Rightarrow 2m + 1 = - \frac{1}{2}\\
\Rightarrow m = - \frac{3}{4}\\
d)\left( d \right) \equiv \left( {d'} \right)\\
\Rightarrow \left\{ \begin{array}{l}
2m + 1 = 2\\
2k - 3 = 3k
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
m = \frac{1}{2}\\
k = - 3
\end{array} \right.
\end{array}$