Đáp án:a)(x;y)=(13;0); (-7;-1); (5;2); (1;-3)
b)(x;y)-1;6); (-3;-6); (4;1); (-8;-1); (0;3); (-4;-3); (1;2); (-5;-2)
Giải thích các bước giải:
a)(x-3)(2y+1)=10
⇒x-3; 2y+1∈U(10)={-1;1;-2;2;-5;5;-10;10)
⇒(1)$\left \{ {{x-3=1} \atop {2y+1=10}} \right.$⇔ $\left \{ {{x=4} \atop {y=\frac{9}{2}}} \right.$ (loại)
⇒(2)$\left \{ {{x-3=-1} \atop {2y+1=-10}} \right.$⇔ $\left \{ {{x=2} \atop {y=\frac{-11}{2}}} \right.$ (loại)
⇒(3)$\left \{ {{x-3=10} \atop {2y+1=1}} \right.$⇔ $\left \{ {{x=13} \atop {y=0}} \right.$
⇒(4)$\left \{ {{x-3=-10} \atop {2y+1=-1}} \right.$⇔ $\left \{ {{x=-7} \atop {y=-1}} \right.$
⇒(5) $\left \{ {{x-3=2} \atop {2y+1=5}} \right.$⇔ $\left \{ {{x=5} \atop {y=2}} \right.$
⇒(6)$\left \{ {{x-3=-2} \atop {2y+1=-5}} \right.$⇔ $\left \{ {{x=1} \atop {y=-3}} \right.$
⇒(7)$\left \{ {{x-3=5} \atop {2y+1=2}} \right.$⇔ $\left \{ {{x=8} \atop {y=\frac{1}{2}}} \right.$ (loại)
⇒(8)$\left \{ {{x-3=-5} \atop {2y+1=-2}} \right.$⇔ $\left \{ {{x=-2} \atop {y=\frac{3}{2}}} \right.$ (loại)
⇒(x;y)=(13;0); (-7;-1); (5;2); (1;-3)
b)xy+2y=6⇒ y(x+2)=6
⇒x+2; y∈U(6)={-1;1;-2;2;-3;3;-6;6}
⇒(1)$\left \{ {{x+2=1} \atop {y=6}} \right.$⇔ $\left \{ {{x=-1} \atop {y=6}} \right.$
⇒(2)$\left \{ {{x+2=-1} \atop {y=-6}} \right.$⇔ $\left \{ {{x=-3} \atop {y=-6}} \right.$
⇒(3)$\left \{ {{x+2=6} \atop {y=1}} \right.$⇔ $\left \{ {{x=4} \atop {y=1}} \right.$
⇒(4)$\left \{ {{x+2=-6} \atop {y=-1}} \right.$⇔ $\left \{ {{x=-8} \atop {y=-1}} \right.$
⇒(5)$\left \{ {{x+2=2} \atop {y=3}} \right.$⇔ $\left \{ {{x=0} \atop {y=3}} \right.$
⇒(6)$\left \{ {{x+2=-2} \atop {y=-3}} \right.$⇔ $\left \{ {{x=-4} \atop {y=-3}} \right.$
⇒(7)$\left \{ {{x+2=3} \atop {y=2}} \right.$⇔ $\left \{ {{x=1} \atop {y=2}} \right.$
⇒(8)$\left \{ {{x+2=-3} \atop {y=-2}} \right.$⇔ $\left \{ {{x=-5} \atop {y=-2}} \right.$
⇒(x;y)-1;6); (-3;-6); (4;1); (-8;-1); (0;3); (-4;-3); (1;2); (-5;-2)