Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne \left\{ { - 1;\frac{3}{4}} \right\}\\
\frac{{(3{x^2} - x).(3 - 2{x^2})}}{{4{x^2} + x - 3}} = \frac{{ - 6{x^4} + 2{x^3} + 9{x^2} - 3x}}{{4{x^2} + x - 3}}\\
= \frac{{x\left( {1 - 3x} \right)\left( {2{x^2} - 3} \right)}}{{\left( {4x - 3} \right)\left( {x + 1} \right)}}\\
Xet:x\left( {1 - 3x} \right)\left( {2{x^2} - 3} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
x = \frac{1}{3}\\
x = \pm \sqrt {\frac{3}{2}}
\end{array} \right.
\end{array}\)
BXD:
x -∞ \( - \sqrt {\frac{3}{2}} \) -1 0 1/3 3/4 \(\sqrt {\frac{3}{2}} \) +∞
f(x) - 0 + // - 0 + 0 - // + 0 -