Hai dao động vuông pha có: \(\dfrac{{{x_1}^2}}{{{A_1}^2}} + \dfrac{{{x_2}^2}}{{{A_2}^2}} = 1\) Hai dao động ngược pha có: \(\dfrac{{{x_1}}}{{{A_1}}} = - \dfrac{{{x_3}}}{{{A_3}}}\) Sử dụng máy tính bỏ túi để tìm biên độ dao động tổng hợpGiải chi tiết:Từ phương trình dao động, ta thấy: Dao động x1 vuông pha với dao động x2 Dao động x1 ngược pha với dao động x3 Áp dụng công thức độc lập với thời gian cho hai dao động x1, x2 tại hai thời điểm t1, t2, ta có: \(\left\{ \begin{array}{l}\dfrac{{{{\left( {6\sqrt 2 } \right)}^2}}}{{{A_1}^2}} + \dfrac{{{3^2}}}{{{A_2}^2}} = 1\\\dfrac{{{{\left( {6\sqrt 3 } \right)}^2}}}{{{A_1}^2}} + \dfrac{{{{\left( {\dfrac{{3\sqrt 2 }}{2}} \right)}^2}}}{{{A_2}^2}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1} = 12\,\,\left( {cm} \right)\\{A_2} = 3\sqrt 2 \,\,\left( {cm} \right)\end{array} \right.\) Với hai dao động x1, x3 tại thời điểm t1, ta có: \(\dfrac{{{x_1}}}{{{A_1}}} = - \dfrac{{{x_3}}}{{{A_3}}} \Rightarrow \dfrac{{6\sqrt 2 }}{{12}} = \dfrac{{ - \dfrac{{9\sqrt 2 }}{2}}}{{{A_3}}} \Rightarrow {A_3} = 9\,\,\left( {cm} \right)\) Sử dụng máy tính bỏ túi, ta có: \(\begin{array}{l}A\angle \varphi = {A_1}\angle {\varphi _1} + {A_2}\angle {\varphi _2} + {A_3}\angle {\varphi _3}\\ \Rightarrow 12\angle \dfrac{\pi }{6} + 3\sqrt 2 \angle - \dfrac{\pi }{3} + 9\angle - \dfrac{{5\pi }}{6} = 3\sqrt 3 \angle - 0,43\\ \Rightarrow A = 3\sqrt 3 \,\,\left( {cm} \right)\end{array}\)