A.withB.wereC.whenD.started
A.wasB.playC.makingD.pictures
A.\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {3x + \sqrt {3x + \sqrt {3x} } } - \sqrt {3x} } \right) = \dfrac{1}{2}\) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {3x + \sqrt {3x + \sqrt {3x} } } - \sqrt {3x} } \right)\) không tồn tại.B.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {3x + \sqrt {3x + \sqrt {3x} } } - \sqrt {3x} } \right) = \dfrac{1}{2}\)C.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {3x + \sqrt {3x + \sqrt {3x} } } - \sqrt {3x} } \right) = -\dfrac{1}{2}\)D.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {3x + \sqrt {3x + \sqrt {3x} } } - \sqrt {3x} } \right)\) không tồn tại
A.\(\mathop {\lim }\limits_{x \to \pm \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) =- 2\)B.\(\mathop {\lim }\limits_{x \to \pm \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) = 2\)C.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) = -2\\\mathop {\lim }\limits_{x \to - \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) = 2\end{array}\)D.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) = 2\\\mathop {\lim }\limits_{x \to - \infty } x\left( {\sqrt {{x^2} + 1} - \sqrt {{x^2} - 3} } \right) = - 2\end{array}\)
A.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {4{x^2} + 2x + x} - 1} \right) = 0\)B.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {4{x^2} + 2x + x} - 1} \right) = - \infty \)C.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {4{x^2} + 2x + x} - 1} \right) = + \infty \)D.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {4{x^2} + 2x + x} - 1} \right) = \pm \infty \)
A.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = \dfrac{3}{2}\\\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = + \infty \end{array}\)B.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) =- \dfrac{3}{2}\\\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = + \infty\end{array}\)C.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = \dfrac{3}{2}\\\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = - \infty\end{array}\)D.\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) =- \dfrac{3}{2}\\\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 3x + 1} - x} \right) = - \infty\end{array}\)
A.arrivedB.were singingC.on the stageD.when
A.as well asB.friendsC.goD.at
A.interestedB.whichC.atD.last Sunday
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến