A.\(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)B.\(\int\limits_a^b {f\left( x \right)dx} \)C.\(\int\limits_a^b {{f^2}\left( x \right)dx} \)D.\(\pi \int\limits_a^b {f\left( x \right)dx} \)
A.\( - 2\)B.\(2\)C.\( - 1\)D.\(1\)
A.\(\left( { - \infty ; + \infty } \right)\)B.\(\left[ { - 5;1} \right)\)C.\(\left( { - 5;1} \right)\)D.\(\left[ { - 5;1} \right]\)
A.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 16\)B.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\)C.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 4\)D.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\)
A.\(\dfrac{{a\sqrt 3 }}{3}\)B.\(\dfrac{a}{3}\)C.\(\dfrac{{a\sqrt 3 }}{2}\)D.\(\dfrac{a}{2}\)
A.\(2019\)B.\(2022\)C.\(2020\)D.\(2021\)
A.\(AB\)B.\(AO\)C.\(AD\)D.\(SO\)
A.\(\dfrac{{x + 1}}{1} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z + 2}}{1}\)B.\(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z - 2}}{1}\)C.\(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{1}\)D.\(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{2}\)
A.\(\pi \int\limits_0^1 {{e^{3x}}dx} \)B.\(\int\limits_0^1 {{e^{3x}}dx} \)C.\(\int\limits_0^1 {{e^{6x}}dx} \)D.\(\pi \int\limits_0^1 {{e^{6x}}dx} \)
A.\(2\)B.\(3\)C.\(1\)D.\(4\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến