`lim_{x->0} (1+x+x^2+x^3)/(1+x)`
`= (1+0+0^2+0^3)/(1+0)`
`= 1`
`lim_{x->1} (x^3-1)/(x^2-3x+2)`
`= lim_{x->1} (x^2+x+1)/(x-2)`
`= (1^2+1+1)/(1-2)`
`= -3`
`lim_{x->+oo} (\sqrt{x^2+x} +x)`
`= lim_{x->+oo} (\sqrt{x^2+x}) + lim_{x->+oo}(x)`
`= +oo +oo`
`= +oo`
`lim_{x->-1} (\sqrt{3x^2+1}-x)/(x-1)`
`= (\sqrt{3(-1)^2 + 1} - (-1))/((-1)-1)`
`= -3/2`
`lim_{x->2} (\sqrt{4x+1}-3)/(x^2-4)`
`= lim_{x->2} ((4x-8)/(\sqrt{4x+1}+3) : x^2 - 4)`
`= lim_{x->2} ( 4/((\sqrt{4x+1}+3)(2+2)) )`
`= 4/((\sqrt{4.2+1}+3)(2+2))`
`= 1/6`
`lim_{x->+oo}(\sqrt{x^2+x}-x)`
`= lim_{x->+oo} x/(\sqrt{x^2+x}+x)`
`= lim_{x->+oo} 1/(\sqrt{1+1/x}+1)`
`= (lim_{x->+oo}(1))/(lim_{x->+oo}(\sqrt{1+1/x}+1))`
`= 1/2`