`a)`
ĐKXĐ : ` x \ne 2;\ x \ne -2`
`b)`
` C = (x^3)/(x^2-4) - x/(x-2) - 2/(x+2)`
` = (x^3)/((x-2)(x+2)) - (x(x+2))/((x-2)(x+2)) - (2(x-2))/((x-2)(x+2))`
` = ( x^3 - x^2 - 2x - 2x +4)/((x-2)(x+2))`
` = (x^3 - x^2 - 4x +4)/((x-2)(x+2))`
` = ( x^2(x-1) - 4(x-1))/((x-2)(x+2))`
` = (( x-2)(x+2)(x-1))/((x-2)(x+2))`
` = x -1`
` C = 0 \to x -1 = 0 \to x= 1`
`c)`
` C = x -1` nên ` C > 0` khi ` x -1 > 0 \to x > 1`