Đáp án:
Giải thích các bước giải:
$A=1+\dfrac{1}{2}+\dfrac{1}{2^{2}}+...+\dfrac{1}{2^{2019}}$
$ $
$⇒\dfrac{1}{2}.A=\dfrac{1}{2}+\dfrac{1}{2^{2}}+\dfrac{1}{2^{3}}+...+\dfrac{1}{2^{2020}}$
$ $
$⇒\dfrac{1}{2}.A-A=(\dfrac{1}{2}+\dfrac{1}{2^{2}}+\dfrac{1}{2^{3}}+...+\dfrac{1}{2^{2020}})-(1+\dfrac{1}{2}+\dfrac{1}{2^{2}}+...+\dfrac{1}{2^{2019}})$
$ $
$⇒\dfrac{-1}{2}A=\dfrac{1}{2^{2020}}-1$
$ $
$⇒\dfrac{-1}{2}.A=\dfrac{1-2^{2020}}{2^{2020}}$
$ $
$⇒A=\dfrac{-2.(1-2^{2020})}{2^{2020}}=\dfrac{-1+2^{2020}}{2^{2019}}$