Đáp án:
`A=((sqrtx-2)/(x-1)-(sqrtx+2)/(x+2sqrtx+1))(1-x)^2/2`
`a)đk:x>=0,x ne 1`
`A=((sqrtx-2)/((sqrtx-1)(sqrtx+1))-(sqrtx+2)/(sqrtx+1)^2)(x-1)^2/2`
`A=((sqrtx-2)(sqrtx+1)-(sqrtx+2)(sqrtx-1))/((sqrtx+1)^2(sqrtx-1))(x-1)^2/2`
`A=(x-sqrtx-2-x-sqrtx+2)/((x-1)(sqrtx+1))(x-1)^2/2`
`A=(-2sqrtx)/((x-1)(sqrtx+1))(x-1)^2/2`
`A=-sqrtx(sqrtx-1)`
`b)` để `A>0`
`<=>-sqrtx(sqrtx-1)>0`
`<=>sqrtx(sqrtx-1)<0`
Mà `sqrtx>=0`
`<=>` \(\begin{cases}\sqrt{x}>0\\\sqrt{x}-1<0\\\end{cases}\)
`<=>` \(\begin{cases}x>0\\x<1\\\end{cases}\)
`<=>0<x<1.`
`c)A=-sqrtx(sqrtx-1)`
`=-x+sqrtx`
`=-(x-sqrtx)`
`=-(x-sqrtx+1/4)+1/4`
`=-(sqrtx-1/2)^2+1/4<=1/4`
Dấu '=' xảy ra khi `sqrtx=1/2<=>x=1/4.`