Đáp án:
$\\$
`a,`
`|2x - 1| + 5 |y + 2| = 0`
Do : \(\left\{ \begin{array}{l}|2x-1|\geqslant 0∀x\\|y+2|\geqslant 0∀y\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}|2x-1|\geqslant 0∀x\\5|y+2|\geqslant 0∀y\end{array} \right.\)
$↔ |2x-1| + 5 |y + 2| \geqslant 0 ∀ x,y$
Dấu "`=`" xảy ra khi :
`↔` \(\left\{ \begin{array}{l}2x-1=0\\y+2=0\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}2x=1\\y=-2\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=\dfrac{1}{2}\\y=-2\end{array} \right.\)
Vậy `(x;y) = (1/2; -2)`
$\\$
`b,`
`|2x-4| + |x + y - 4| = 0`
Do : \(\left\{ \begin{array}{l}|2x-4|\geqslant 0∀x\\|x+y-4|\geqslant 0∀y\end{array} \right.\)
$↔ |2x-4| + |x +y-4| \geqslant 0 ∀ x,y$
Dấu "`=`" xảy ra khi :
`↔` \(\left\{ \begin{array}{l}2x-4=0\\x+y-4=0\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}2x=4\\x+y=4\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=2\\2+y=4\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=2\\y=2\end{array} \right.\)
Vậy `(x;y)=(2;2)`
$\\$
`c,`
`|x-1| + |xy + 5| = 0`
Do : \(\left\{ \begin{array}{l}|x-1|\geqslant 0∀x\\|xy+5|\geqslant 0∀y\end{array} \right.\)
$↔ |x-1| + |xy + 5| \geqslant 0∀x,y$
Dấu "`=`" xảy ra khi :
`↔` \(\left\{ \begin{array}{l}x-1=0\\xy+5=0\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=1\\1.y=-5\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=1\\y=-5\end{array} \right.\)
Vậy `(x;y) = (1;-5)`
$\\$
`d,`
`|x-y+2| + |4-y| = 0`
Do : \(\left\{ \begin{array}{l}|x-y+2|\geqslant 0∀x\\|4-y|\geqslant 0∀y\end{array} \right.\)
$↔ |x-y+2| + |4-y| \geqslant 0 ∀ x,y$
Dấu "`=`" xảy ra khi :
`↔` \(\left\{ \begin{array}{l}x-y+2=0\\4-y=0\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x-4=-2\\y=4\end{array} \right.\)
`↔` \(\left\{ \begin{array}{l}x=2\\y=4\end{array} \right.\)
Vậy `(x;y) = (2;4)`