\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\)\(\Rightarrow a=b=1\)