a) Rút gọn biểu thức: \(P=\frac{{{x}^{2}}}{\left( x+y \right)\left( 1-y \right)}-\frac{{{y}^{2}}}{\left( x+y \right)\left( 1+x \right)}-\frac{{{x}^{2}}{{y}^{2}}}{\left( 1+x \right)\left( 1-y \right)}.\)
b) Chứng minh rằng: \(\sqrt{1+\frac{1}{{{1}^{2}}}+\frac{1}{{{2}^{2}}}}+\sqrt{1+\frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}}+.....+\sqrt{1+\frac{1}{{{2017}^{2}}}+\frac{1}{{{2018}^{2}}}}<2018.\)
A.a) \(P=x+xy-2y.\)
B.a) \(P=x+xy-y.\)
C.a) \(P=2x-xy-y.\)
D.a) \(P=2x+xy-2y.\)

Các câu hỏi liên quan